

Trends, Variability and Change in Hudson Bay Climate

Prof. David Barber Centre for Earth Observation Science University of Manitoba

Eeyou Marine Region Symposium March 26, 2014

Presentation Overview

- Introduction to CEOS
- The context for our work
- A summary of our Hudson and James Bay Research
- A look ahead

Why Manitoba?

Centre of a Pan-Canadian Network

Why Manitoba?

ASP – our International Network

How we do our work...

5

CMO – Science rationale

Freshwater inputs to Hudson Bay and James Bay are increasing

- River inputs to Hudson Bay have increased (e.g. Dery 2005, 2011)
- Are projected to continue to rise (Clair 1998.)

Discharge (cu km)

500

(McCullough et al. 2012)

(Dery et al. 2010)

Temperature trends are apparent over Hudson Bay and James Bay region

Seasonal Surface Air Temperature Trends 1980-2010

- Trends are positive in all seasons, strongest in Fall, and in NW.
- Trend was variable, slightly declining until mid 1990s, then rapidly increasing.

Cangrid data interpolated from Vincent et al. 2012 homogenized station data. (Hochheim, 2014)

Ρ

Our Hudson Bay, Nelson River estuary and remote sensing programs study implications of these changes

Freshwater-Marine Program

Freshwater Cycling Spatial Variability

- Isotopes and ocean color are tracers of freshwater sources
- River runoff is largely constrained to nearshore waters in Hudson Bay (top)
- Sea-ice melt is distributed more evenly in the Bay (bottom).
- Strong gradients in the bio-optical properties of the surface waters potentially control the biomass and occurrence of chlorophyll maxima

Passive microwave remote sensing of spatial, temporal sea ice trends - Spring

Sea Ice Concentration (SIC) per week, 1980-1995 vs. 1996-2010

Sea Ice Concentration (SIC) Trends (β) and significance (p), 1980 to 2010

β

Passive microwave remote sensing of spatial, temporal sea ice trends - Fall

Sea Ice Concentration (SIC) per week, 1980-1995 vs. 1996-2010

Sea Ice Concentration (SIC) Trends (β) and significance (p), 1980 to 2010

13

β

Implications of changes to marine transportation

Cumulative Change in OW Season

(Weeks)

- Significant inter-annual variability remains in near-shore zones.
- Synoptic controls over temperature and circulation (EP/NP Index) raise the potential for seasonal forecasting of Fall ice extent.

Satellite (MERIS) remote sensing of freshwater/marine coupling.

- Suspended solid signal includes both river plume and tidal resuspension along the coast.
- Organic matter isolates the signal of river water showing river plume extending into the bay.

NEMO at CEOS

- An ocean model(OPA) coupled with a sea-ice model(LIM2)
- Covers entire Arctic Ocean and part of North Atlantic Ocean
- Horizontal resolution varies
 6-18km(within Arctic Ocean)

- Vertical levels: 50; The maximum depth is 5.7km
- 9 layers are within 11m from surface
- Time step: 15minutes

NEMO Spatial and Temporal Patterns

NEMO Spatial and Temporal Patterns

NEMO Projections - Salinity

 Seasonal projected change in salinity 2006 – 2050 from relative to 1981 – 2000 climatology

NEMO Projections – Sea Ice Concentration

 Seasonal projected change in SIC 2006 – 2050 from relative to 1981 – 2000 climatology

Key Unknowns – Future areas of study

- Freshwater marine coupling is only partially understood.
 - Timing of hydrograph impacts biologic productivity, ice formation and decay, contaminant and carbon cycling.
 - Lack of winter & spring observations, and difficulty accessing Quebec hydrologic data pose challenges to model validation
- Ensemble of climate models required to estimate anticipated changes in ocean ice conditions.
- Monitoring at community and regional scales will enhance understanding of ocean-sea-ice-atmosphere interactions.

BaySys 2014-2018

NSERC CRD proposal (\$13.12M)

- Winter program
 Summer program
 Modelling program
 ArcticNet IRIS

Proposed collaborative research with Manitoba Hydro

Overarching objective to provide a scientific basis to separate climate change effects from those of hydroelectric regulation for the following:

- Marine/Climate System D. Barber
- Freshwater/Littoral System T. Stadynk
- Marine Ecosystem J.E. Tremblay
- Carbon Cycling T. Papakyriakou
- Contaminants F. Wang

Coordinated field programs

xe Channel

N61

W82.5°

N59°

N5

N55

W92.5

Nelson Estuary

Churchill Estuary W87.5°

Hudson Bay

W67.5° Ingava Bay

Baywide Sampling -Spring/Summer 2016

W77.5

W72.5

Estuary Sampling – Winter/ Spring 2016

> Cross Bay transects – Spring/Summer 2016

Moorings and Opportunistic Sampling – 2015-2017

Thank you!

David.Barber@umanitoba.ca